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Approach to Gaussian stochastic behavior for systems driven by deterministic chaotic forces
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We consider skew-product dynamical systems that describe the stroboscopic dynamics of a damped particle
subjected to a chaotic kick force. In a suitable scaling limit the dynamics converges to the Ornstein-Uhlenbeck
process. We investigate the deterministic chaotic corrections in the vicinity of this Gaussian limit case for
various examples of chaotic forces. We present numerical evidence that, for certain classes of chaotic forces,
the deterministic chaotic corrections of the invariant density are universal. We provide analytical results for
forces generated by Tchebyscheff maps and sketch a renormalization group theory in the space of probability
densities.@S1063-651X~99!11610-6#
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I. INTRODUCTION

An interesting problem in statistical physics is the conn
tion between random behavior of Brownian motion type o
mesoscopic scale and an underlying deterministic dynam
on a microscopic scale@1–11#. Dynamical systems of Lange
vin type ~or, in general, of skew-product form! can be re-
garded as suitable models for these types of problems@12–
22#. In the simplest case they describe the strobosco
dynamics of a particle that moves in damping medium un
chaotic kicks, which evolve in a deterministic way on a fa
time scale. The force on the fast time scale is not Gaus
white noise~as it is for the Langevin equation! but a more
complicated,a priori arbitrary chaotic process, generated
a deterministic evolution rule. For the case of a linear dam
ing, one obtains maps of Kaplan-Yorke type@23#. Many as-
pects of such dynamics have been investigated, dealing
ergodic and mixing properties@15,17,18,20#, the dimension
of the attractor@16,21,23#, higher-order correlation function
@19#, invariant densities@15,24#, and many other properties
Generalizing the concept to higher dimensions, physical
plications have been pointed out for turbulence@25–27# and
quantum-field theories@28,29#.

For the maps of skew-product form considered here,
der certain assumptions concerning the mixing propertie
the chaotic driving force, it has been proven that the com
cated chaotic dynamics reduces to a Langevin process i
appropriate scaling limit~regarding the initial values as ran
dom variables!. The proof is based on functional central lim
theorems for weakly dependent events@13,30#. For example,
the convergence to the Langevin process has been pr
rigorously for kick forces generated by Tchebyscheff ma
or any other map conjugated to a Bernoulli shift, as well
for other maps such as the continued fraction map. M
interesting results on central-limit theorems for dynami
systems are well known in the mathematical literature@30–
44#.

*Present address: Center for Turbulence Research, Bldg.
Stanford University, Stanford, CA 94305-3030.
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In this paper we systematically investigate various typ
of chaotic kick forces where it is known that the syste
approaches a Langevin process~the Ornstein-Uhlenbeck pro
cess! in the scaling limit. We are interested in the determ
istic chaotic corrections in the vicinity of this limit case. W
will investigate the deviations of the invariant density fro
the Gaussian density for many examples of chaotic driv
forces. We will provide numerical evidence that often t
approach to the Gaussian density takes place via scaling
havior of the leading order correction with the time sca
parameter. Moreover, we will provide numerical eviden
for universal behavior. That is to say, for certain classes
chaotic forces, one always finds the same deterministic c
otic corrections of the invariant density in the vicinity of th
Gaussian limit case. We will present analytical results o
tained for Tchebyscheff polynomials where the dynam
can be understood completely. Finally, we will sketch
renormalization-group approach to this problem.

II. NUMERICAL INVESTIGATION OF UNIVERSALITY
PROPERTIES

We investigate dynamical systems of the skew-prod
form

xn115T~xn!,

un115lun1At xn , l5e2t. ~1!

T is some chaotic mapping andt is a small time scale pa
rameter. The above kind of map is called a map of line
Langevin type@12# since it is related to the linear Langevi
equation describing dynamical Brownian motion@45#. un
corresponds to the stroboscopic velocity of a particle in
viscous medium subjected to a chaotic kick force. Integrat
the equation of motion

u̇52gu1At (
n51

`

xn21d~ t2nt!, ~2!0,
5385 © 1999 The American Physical Society
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FIG. 1. ~a! Invariant densityp(u), and ~b!
deviation of p(u) from the Gaussianp0(u) for
the second, third, and fourth Tchebyscheff pol
nomial; t50.1.
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one obtains recurrence relation~1! for the velocityun imme-
diately after the kick. For convenience, we have choseg
51 and rescaled the kick strengths by the factorAt.

We characterize the process generated by map~1! by the
marginal invariant densityp(u) of the u variable. The dy-
namics generated by various mapsT such as the Tcheby
scheff polynomials, the tent and the continued fraction m
the mapT(x)5122x4, the logistic map, and the binary shi
map will be analyzed. For all examples of maps investiga
in this paper, the numerical simulation of Eq.~1! confirms
that the marginal invariant density converges to a Gaus
distributionp0(u) in the limit t→0. For certain mapsT, this
can actually be proved rigorously. If the mapT possesses th
so-calledw mixing property ~a slightly stronger condition
than the ordinary mixing property! it can be shown that the
solutionu(t) of Eq. ~2! converges to the Ornstein-Uhlenbe
process in the limitt→0, t5nt finite, regarding the initial
valuesx0 as random variables@13,30#. Hence in this limit
there is equivalence between Eq.~1! and the Langevin equa
tion, and the rescaled deterministic chaotic kick force
duces to Gaussian white noise. On the other hand, for a fi
time scalet, which is inherent in any physical system, the
are deviations of the invariant densityp(u) from the Gauss-
ian p0(u). These deviations depend on the mapT.

In order to understand these deviations, we have p
formed an intensive numerical study for various stand
examples of mapsT. For each choice ofT we have per-
formed 108 iteration steps of Eq.~1! and have calculated
histograms of theu variable. We have repeated the calcu
tion for several values of the time scale parametert. For
some mapsT the standard deviation of the Gaussianp0(u)
approached in the limit of vanishingt is known analytically
@13#. In this case the deviations from the Gaussianp(u)
2p0(u) can be evaluated immediately. If the standard dev
tion is not known, we have determined it numerically from
simulation with a very small value oft.

A. The Tchebyscheff polynomials

We start with the case in which the mapT in Eq. ~1! is a
Tchebyscheff polynomialTN of orderN. It has been shown
in @19# that for these polynomials the number of nonvanis
ing higher-order correlations is smaller than for any oth
deterministic map semiconjugated to a shift. Therefore,
TN have strongest random properties and the dynamics i
a sense, closer to Gaussian white noise than that gene
by any other smooth chaotic map. Since the Tchebysc
polynomials arew mixing, the process generated by the va
,
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able un in Eq. ~1! is known to converge to the Ornstein
Uhlenbeck process in the limitt→0. For allN, in this limit
case the invariant density is given by the Gaussian

p0~u!5A2

p
e22u2

. ~3!

We consider the polynomials

T2~x!52x221,

T3~x!54x323x,

T4~x!58x428x211,

T5~x!516x5220x315x,

T6~x!532x6248x4118x221, ~4!

and initial valuesx0P@21,1#. It is possible to obtain an
analytic expression for the probability densityp(u) for small
but finite t by considering a perturbative expansion in t
time constantt. The corrections to the Gaussian can be d
termined either from the Perron Frobenius equation@24# or
by an investigation of higher-order correlations and sub
quent Fourier transformation@19#. The calculation has so fa
been explicitly carried out for the mapT2, yielding @19,24#

p~u!5@11t1/2c~22u1 8
3 u3!#p0~u!1O~t!, ~5!

wherec51 for the Tchebyscheff mapT2 andc521 for the
Ulam map2T2. Note that the first correction term of orde
t1/2 consists of an odd polynomial multiplied by the Gaus
ian p0(u).

Figure 1~a! shows numerical results for the invariant de
sity p(u) obtained for the second, third, and fourth Tcheb
scheff polynomial. The plots were obtained by iterating E
~1! for the parameter valuet50.1 and using the histogram
method. While the probability density forT2(x) shows a
clear asymmetry,p(u) is symmetric or almost symmetric fo
the Tchebyscheff polynomials of higher order. This is co
firmed by Fig. 1~b!, which shows the deviations from th
Gaussianp(u)2p0(u). In Sec. III we will outline how the
invariant density can be analytically calculated for the Tch
byscheff polynomials of arbitrary orderN>2.

It has been proved in@12# that p(u) is symmetric ifT(x)
is an odd function and if at the same time the invariant d
sity r(x) of T is an even function ofx. Since for all Tche-
byscheff mapsTN the invariant density
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r~x!5
1

pA12x2
~6!

is an even function, the symmetry ofp(u) is thus understood
for all Tchebyscheff maps with oddN. On the other hand
there is no simple explanation for the symmetry ofp(u)
generated byT4 andT6. We will come back to this in Sec
III.

Figure 2 shows the deviations from the Gaussian for
third and fourth Tchebyscheff polynomials, calculated
two different values of the time constantt50.05 and
t50.2. The smaller the deviations from the Gaussian,
more difficult it is to calculate them with a small statistic
error. We have divided the deviationp(u)2p0(u) by t in
order to analyze the scaling behavior witht. Since the curves
in Fig. 2 calculated for differentt do not differ significantly,
there is numerical evidence that the first correction to
Gaussian is of ordert. This stands in clear contrast toT2,
where it is of ordert1/2. Generally, no corrections of orde
t1/2 are observed for arbitrary Tchebyscheff polynomials
orderN>3.

Further increasing the indexN, one notices that for the
Tchebyscheff polynomials of orderN>4 the invariant den-
sitiesp(u), as calculated by the histogram method, coinc
for all N within the statistical error. This is shown in Fig. 3
We will explain this fact in Sec. III.

B. The tent and continued fraction map

The tent map

T~x!5122uxu, xP@21,1# ~7!

is semiconjugated to the Bernoulli shift and hence isw mix-
ing. It is an even function ofx and it has an even invarian
densityr(x)5 1

2 on @21,1#. Though the tent map is topo
logically conjugated to the second Tchebyscheff polynom
T2, the entire two-dimensional map~1! is not, and hence a
different dynamics arises. When iterating Eq.~7!, noise of
small amplitude is added to the iteratesxn in order to avoid
numerical errors that occur when the trajectory comes c
to the fixed pointx521.

FIG. 2. Scaling of the deviations from the Gaussianp(u)
2p0(u) for the third and fourth Tchebyscheff polynomial;t
50.05 andt50.2.
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The continued fraction map

T~x!5
1

x
2 b 1

x
c, xP~0,1# ~8!

is alsow mixing. However, it is not conjugated to a shif
Neither map~8! nor its invariant density

r~x!5
1

~11x!ln 2
~9!

have simple symmetry properties. When iterating map~1!
the mean valuêx&51/ln 221 is subtracted fromxn in order
to obtain a kick force with average 0.

Again we have numerically calculated the marginal
variant densitiesp(u) for different values of the time con
stant t and compared the respective deviations from
Gaussian distribution. Both maps yield an asymmetric d
sity p(u), just like the Tchebyscheff polynomial of secon
order. Figure 4 shows the deviations for different values ot.
In the case of the tent map the functions@p(u)
2p0(u)#/At agree well for different values of the time con
stant. The convergence of the invariant density to a Gaus
for t→0 is slower for the continued fraction map; highe
order terms play a more significant role. For both the t
and the continued fraction map the deviations from a Gau
ian show scaling behavior withAt for sufficiently smallt.

FIG. 3. Deviations ofp(u) from the Gaussianp0(u) for the
Tchebyscheff polynomialsT4 , T5, andT6 ; t50.1.

FIG. 4. Scaling of the deviationsp(u)2p0(u) for ~a! the tent
and ~b! the continued fraction map.
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FIG. 5. Scaling properties of~a! the tent map,
t50.005, andt50.02 and~b! the continued frac-
tion map, t50.008, andt50.02; comparison
with the functionc1p1(u) and c2p1(u) with c1

51.62 andc250.59.
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In Fig. 5 we compare the deviations from the respect
Gaussian for the tent and the continued fraction map w
those of the Ulam map. For this purpose we scaled the p
ability distributions such that the standard deviation takes
values51/2 for all p(u). There is numerical evidence tha
for both the tent and the continued fraction map there
convergence of@p(u)2p0(u)#/At to cp1(u), with

p1~u!5~2u2 8
3 u3!p0~u! ~10!

being the analytical result obtained for the Ulam map. T
limits obtained for all three mappings differ by the factorc
only. Whereasc51 for the Ulam map, we havec51.62 for
the tent map andc50.59 for the continued fraction map.
can, therefore, be concluded that the first corrections to
Gaussian are given by expression~10! and that this expres
sion has universal significance, being of relevance for sev
different maps.

C. The map T„x…5122x4

For the map

T~xn!5122x4, xP@21,1# ~11!

the mixing properties are not known. The simulation h
shown that large numerical errors occur when the trajec
reaches the vicinity of the fixed points. Therefore, a prec
calculation of the invariant densityp(u) is difficult. Never-
theless, we have observed that the invariant densityp(u)
converges to a Gaussian in the limit of a vanishing ti
constant. The deviations from the Gaussian are asymm
and very close to those observed for the Ulam map. T
show scaling withAt.

D. The logistic map

The dynamics of the logistic map

T~x!512mx2, xP@21,1# mP@0,2# ~12!

is well known to depend on the value of the control para
eter m in a nontrivial way. Form.m`51.401 155 189 the
motion is chaotic apart from the windows, where aga
stable periodic motion exists.

We have investigated the dynamics for valuesm
P@1.8,2.0# that do not correspond to stable periodic motio
Apart from the valuem52, which corresponds to the Ulam
map, and apart from special parameter values such as
e
h
b-
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e
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the

Misiurewicz points, the mixing properties are not analy
cally known. Form,2 we have calculated the marginal in
variant densityp(u) numerically. We again have subtracte
the mean valuêx& from xn in Eq. ~1!. The invariant density
p(u) converges to a Gaussian with a different variance
each value ofm. It depends on the control parameter in
complicated fractal way~Fig. 6!.

Figure 7 shows the deviations from the Gaussian fot
50.04 andt50.08 and for six examples of the control p
rameter. The first figure once again shows the antisymme
first-order term and the scaling withAt observed form52.
Deviations from antisymmetry are just due to the next p
turbative term of ordert. Whenm is decreased, the asym
metry of p(u) becomes smaller. Even whenm is only
slightly smaller than 2, the distribution has lost its scali
behavior withAt. For 1.999>m.1.95 the deviations from
the Gaussian are similar to those observed for the Tche
scheff polynomials of orderN>3 and the distributions scal
approximately witht. Three examples for this range a
shown in Figs. 7~b!–7~d!. While for m51.99 andm51.96
the functions@p(u)2p0(u)#/t are quite similar for different
t, deviations from this simple scaling behavior appear
m51.97. A distinguished parameter value for which we ha
observed both exact scaling witht and a symmetric devia
tion p(u)2p0(u) is m51.96. Form,1.94 the distributions
are different from those observed for the Tchebyscheff po
nomials of higher-order. They are asymmetric and no sim
scaling with a power oft seems to exist. For some value

FIG. 6. Variance ofp(u) as a function of the control paramete
m; t50.002.
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FIG. 7. Deviations from the Gaussian for th
logistic map with ~a! m52.0, ~b! m51.99, ~c!
m51.97, ~d! m51.96, ~e! m51.92, and~f! m
51.86; t50.04 and 0.08.
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m,1.9 there are invariant densitiesp(u) for which the de-
viations of the Gaussian are antisymmetric or almost a
symmetric. Figure 7~f! indicates that form51.86 scaling
with At appears again. The deviations from the Gaussian
antisymmetric~apart from higher-order terms!, but this time
the asymmetry has the opposite sign compared to the U
map in Fig. 7~a!. Asymmetric distributions and scaling wit
At are typically observed in the vicinity of the windows.

Figure 8 confirms that form51.96 andm51.86 the de-
viations correspond to those of the second and fourth Tc
byscheff polynomials~up to a multiplicative constant!. This
again indicates universality, i.e., the Tchebyscheff deviati
from the Gaussian are relevant for other maps as well.

E. The binary shift map

The binary shift map is given by

T~x!52x2 b2xc, xnP@0,1! ~13!

where b2xc denotes the integer part of 2x. Since a direct
simulation of Eq.~13! yields problems with round-off errors
we have calculated the binary representation ofxn in every
i-

re

m

e-

s

iteration step.xn11 is then calculated by performing a shi
of symbols and replacing the last digit randomly by 0 or
Since the averagêxn&5 1

2 does not vanish it is subtracted i
Eq. ~1!.

The binary shift map isw mixing. T(x) is an odd function
with respect tox5 1

2 and its invariant densityr(x)51 is
symmetric aroundx5 1

2 . Therefore, the invariant densit

FIG. 8. Deviations from the Gaussian for the logistic map w
~a! m51.96 and~b! m51.86, compared to those of the Tcheb
scheff polynomialsT4 andT2; ~a! t50.1, and~b! t50.02.
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p(u) is symmetric@12#. Figure 9 shows the deviations from
the Gaussian that have been calculated with Eq.~1!. Again
the deviations have been divided byt in order to show scal-
ing with t. The functions calculated fort50.04 and t
50.1 are very similar, thus indicating that the lowest-ord
correction to the Gaussian scales witht. For the binary shift
map the shape of the deviation from the Gaussian is diffe
from that calculated for the Tchebyscheff polynomials of a
order. It spans up another universality class.

F. Random numbers

We have also investigated which form the invariant de
sity takes on if thexn are not generated by a determinis
chaotic map but chosen as independent random numbers
have used equally distributed random numbers in@21,1)
with invariant densityr(x)5 1

2 . Again, convergence to a
Gaussian is observed in the limitt→0. This, of course, is a
consequence of the ordinary central-limit theorem for in
pendent random variables. Figure 10 shows that for the
namics generated by random numbers the deviations f
the Gaussian scale witht. In fact, the deviations are purel
produced by the discreteness of dynamics~1!, rather than by
nontrivial higher-order correlations, as for chaotic ma
Nevertheless, apart from a multiplicative factor, the dev
tions for independent random variables are in very go
agreement with those of the Tchebyscheff polynomials
fourth and higher order. Indeed, for those maps the gra

FIG. 9. Scaling of the deviationsp(u)2p0(u) for the binary
shift map;t50.04 andt50.1.
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theoretical method of@19# shows that theO(t) corrections
coincide with those of independent random variables.

G. Discussion

The symmetry and scaling properties of the maps a
lyzed in this paper are summarized in Table I. For the m
that are known to bew mixing, the deviations from the
Gaussian scale with eithert or t1/2. For all maps considered
here that are antisymmetric and that have a symmetric inv
ant densityr(x), the corrections to the Gaussian scale w
t. If the symmetry properties are different from this, bo
kinds of scaling are possible. Scaling witht or t1/2 has also
been observed for maps that are not known to bew mixing.
There seem to exist various shapes of the deviations in
case of scaling witht. On the other hand, if the first correc
tion term to the Gaussian is of orderAt, then this term ap-
pears to be always the same function, apart from a non
versal prefactor. The deviations generated by the Ulam m
tent map, continued fraction map, logistic map with, e.
m51.86 and the mapT(x)5122x4 all coincide in the limit
of small values oft. It can thus be concluded that these ma
are members of one universality class. The invariant den
p(u) is described by Eq.~5!. On the other hand, the Tche
byscheff polynomials of fourth and higher order and the
gistic map for special values of the control parameter le

FIG. 10. Scaling of the deviations from the Gaussian for ind
pendent random numbers in@21,1!, t50.02, andt50.1; compari-
son with the fourth Tchebyscheff polynomial fort50.1.
TABLE I. Characteristic properties of some chaotic maps.

Map w mixing T antisymmetric r symmetric limt→0s Scaling

T3(x),T5(x) yes yes yes 0.5 t
T4(x),T6(x) yes no yes 0.5 t
Binary shift map yes yes yes 1/A6 t

T2(x) yes no yes 0.5 t1/2

Tent map yes no yes 1/A8 t1/2

Continued fraction map yes no no 0.277 t1/2

T(x)5122x4 no no 0.615 t1/2

Logistic map, somem no no varies t,At
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to scaling witht, spanning up another universality class. T
deviations generated by all these maps agree with those
served for independent random numbers. The correspon
correction of ordert is not a consequence of the chao
properties, but merely of the discreteness of map~1!. Differ-
ent corrections of ordert have been found for the binar
shift map and for the Tchebyscheff polynomial of thir
order. Apparently, for maps that generate scaling beha
with t, there exist several paths to approach the Gaus
limit. For those that scale withAt, however, we have only
observed one such path.

III. PERTURBATION THEORY

In this section we present analytical results for the inva
ant probability densityp(u) of process~1! for the case in
which the mapT is a Tchebyscheff polynomial of arbitrar
orderN. We will only give an outline of the procedure her
Details of the calculation will be presented elsewhere.

The approach is based on a perturbative calculation
higher-order correlations for small values of the time co
stantt. The r-point correlation of thex dynamics is

E~xj 1
xj 2

. . . xj r
!ªE

21

1

dx0r~x0!Tj 1~x0!Tj 2~x0! . . . Tj r~x0!,

wherer is the natural invariant density ofT. For the special
case in whichT is the Tchebyscheff polynomial of secon
order, ther-point correlations have been investigated in d
tail in @19#. It has been shown that the nonvanishing cor
lations correspond to a set of graphs. These graphs cons
incomplete double binary forests withr leaves.

Let us now consider ther-point correlation functions
E(un1

, . . . ,unr
). If we choose the initial conditionu050 in

Eq. ~1!, we obtain

un5t
1
2(

j 50

n21

c~ j !xj ~14!

with c( j )5ln2 j 21. Ther-point correlations forun thus are a
superposition of theE(xj 1

•••xj r
),

E~un1
•••unr

!5t
r
2 (

j 150

n121

. . .

3 (
j r50

nr21

c~ j 1! . . . c~ j r !E~xj 1
. . . xj r

!.

This allows us to obtain an expression for the correlatio
E(un1

, . . . ,unr
) and the momentsE(un

r ) using the graphs o
@19#. The fact that each type of graph corresponds to a
tain power ofAt allows for a perturbative calculation of th
correlation functions.

Using the characteristic function

G~k!ªE~eikun!5(
r 50

`
~ ik !r

r !
E~un

r !, ~15!

we obtain the invariant density by Fourier transformation
G(k) in the limit n→`,
b-
ng

or
an

-

of
-

-
-
t of

s

r-

f

p~u!5
1

2pE2`

1`

dkG~k!e2 iku. ~16!

We have extended the approach presented in@19# to Tche-
byscheff polynomials of arbitrary order. The calculation
lengthy but straightforward. The final perturbative result f
the invariant density, including terms up to ordert is for the
Tchebyscheff polynomial of second order@19,24#,

pN52~u!5A2

p
@11t

1
2~22u1 8

3 u3!

1t~ 32
9 u62 31

3 u41 15
2 u22 37

48 !#e22u2
1O~t3/2!;

~17!

for the polynomial of third order,

pN53~u!5A2

p
@11t~ 1

3 u41 3
2 u22 7

16 !#e22u2
1O~t2!;

~18!

and for the polynomials of fourth and higher order,

pN>4~u!5A2

p
@11t~2u41 7

2 u22 11
16 !#e22u2

1O~tk/2!,

~19!

wherek53 for N54 andk54 for N>5. ForN>4 there are
differences in the higher-order terms only, which expla
the results of Fig. 3. In the limitt→0 the invariant density
p(u) approaches the Gaussian~3! for all TN(x),N
52,3, . . . Thefirst correction to the Gaussian is of orderAt
for T2(x) and of ordert for N>3. The correction of order
At multiplying the Gaussian forN52 is an odd function of
u. On the other hand, all corrections of ordert are even
functions, which explains the symmetry of the distributio
shown in Figs. 2 and 3. In Figs. 11–13 we compare
analytical results with the numerical results from Sec.
Apparently the agreement is very good.

FIG. 11. Comparison of perturbative result~17! with the nu-
merical result forT2 ; t50.06.
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IV. RENORMALIZATION GROUP APPROACH

Our analytical results have been obtained for Tche
scheff maps, but the numerical results of Sec. II show t
they seem to have universal significance for larger classe
maps. To explain universal behavior, a common tool is
renormalization group formulation. Let us here be led by
analogy with the Feigenbaum fixed point functiong(x) well
known from the period doubling scenario@46,47#. This func-
tion g is a fixed point of the doubling operatorR, defined by

R f~x!5a f Xf S x

a D C, ~20!

wherea denotes the Feigenbaum constant. Universality oa
andg can be explained by the fact that at the critical point
period doubling accumulation entire classes of functionsf in
a suitable function space converge to the fixed pointg under
successive iteration and rescaling. The behavior in the vi
ity of g is universal, which can be understood by studyi
the linearized version ofR in a small vicinity ofg. Under the
doubling operation, there is only one unstable direction le
ing away from the universal fixed pointg, described by the
universal Feigenbaum constantd and a corresponding uni
versal eigenfunctionh of the linearized version of the dou
bling operator.

In our case the situation is different, but many analog
to the Feigenbaum case hold. We are dealing with proba
ity densities, so we have to look at operators acting in spa
of probability densities. The analogue of the doubling ope
tion is an operation where the time scale parametert is in-
creased to twice that value, i.e.,

t→t852t. ~21!

We then look at the effect this operation has on the invar
density. In the space of probability densities, the Gauss
distribution ~obtained fort→0) is a fixed point under the
above time scale transformation. The central limit theor

FIG. 12. Comparison of perturbative result~18! with the nu-
merical result forT3 ; t50.1.
-
t
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a
e

f

n-

-

s
il-
es
-

t
n

holds in the limitt→0; it does not matter if we look at a
sequencet i→0 or a sequence 2t i→0. The Perron Frobenius
operator has been shown to reduce to the time-sc
independent Fokker-Planck operator fort→0 @24#. Note that
the Gaussian distribution is universal, meaning that ma
different maps satisfy a central limit theorem; details of t
map are unimportant. Hence the Gaussian probability den
p0(u) corresponds to the fixed point functiong in the anal-
ogy with the Feigenbaum scenario.

The behavior in a small vicinity of the Gaussian fixe
point also turns out to be universal, as we find in this pap
This is similar to the universality ofd andh. The first-order
correction to the Gaussian density can be understood
studying the ‘‘linearized’’ version of the Perron Frobeniu
operator in a small vicinity of the Gaussian fixed point f
small but finitet @24#. Under time-scale-doubling transfor
mation ~21!, there appear to be only a few routes leadi
away from the Gaussian fixed point. If there is scaling b
havior with t1/2, the doubling operation leads to an increa
of distance by the factor 21/2 and we only find one universa
function ~in leading order! which describes the deviatio
from the Gaussian fixed point given by Eq.~10!. Our con-
jecture on universality is thus a conjecture on the spectr
of the linearized version of the Perron Frobenius operato
there is scaling witht, the distance doubles under operati
~21! and we have evidence for~at least! three different ways
how we can leave the Gaussian fixed point under time s
doubling. Hence, more universality classes exist in this ca

V. CONCLUSION

We have investigated the effects that an underlying de
ministic chaotic dynamics has on the stationary probabi
density of a typical Brownian motionlike problem. We co
sider the motion of a particle in a damping medium under
influence of deterministic chaotic kicks on a fast time sc
t. Decreasing the time scale parametert, our dynamical pro-
cess converges to a Gaussian Markov process, the Orns
Uhlenbeck process. We have presented numerical evide

FIG. 13. Comparison of perturbative result~19! with the nu-
merical result forT4 andT5 ; t50.1.
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that the route by which this Gaussian process is approac
is universal for certain classes of mappings, namely, th
where the first-order correction scales withAt. Up to a non-
universal factor, we always observe the same functional
pendence describing the deviation from the Gaussian di
bution for a small but finite time scale parameter. It sho
be clear that any physical system possesses such a finite
scale, since the Gaussian white noise of a Langevin equa
is just an idealization. We have sketched a renormaliza
h.

ic

W

.

ed
e

e-
ri-
d
me
on
n

group approach to the problem. Similar asymmetric dev
tions from a Gaussian as in Eq.~17! have also been observe
experimentally for velocity differences measured in fully d
veloped turbulent flows; see@25,27# for a detailed compari-
son with experiments and a suitable chaotic cascade m
for these types of problems. Generally, our results are
interest for all those Langevin problems in physics where
Gaussian white noise is thought to be the result of an un
lying deterministic dynamics.
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