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Approach to Gaussian stochastic behavior for systems driven by deterministic chaotic forces
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We consider skew-product dynamical systems that describe the stroboscopic dynamics of a damped particle
subjected to a chaotic kick force. In a suitable scaling limit the dynamics converges to the Ornstein-Uhlenbeck
process. We investigate the deterministic chaotic corrections in the vicinity of this Gaussian limit case for
various examples of chaotic forces. We present numerical evidence that, for certain classes of chaotic forces,
the deterministic chaotic corrections of the invariant density are universal. We provide analytical results for
forces generated by Tchebyscheff maps and sketch a renormalization group theory in the space of probability
densities[S1063-651X99)11610-9

PACS numbds): 05.45-a

[. INTRODUCTION In this paper we systematically investigate various types
of chaotic kick forces where it is known that the system
An interesting problem in statistical physics is the connec-approaches a Langevin procéggse Ornstein-Uhlenbeck pro-

tion between random behavior of Brownian motion type on ac€s$ in the scaling limit. We are interested in the determin-
mesoscopic scale and an underlying deterministic dynamic§tic chaotic corrections in the vicinity of this limit case. We
ona microscopic Sca[é__]_];l_ Dynamica| systems of Lange- will investigate the deviations of the invariant density from
vin type (or, in general, of skew-product fojntan be re- the Gaussian density for many examples of chaotic driving
garded as suitable models for these types of prob[g[ﬁs. forces. We will provide numerical evidence that often the
22]. In the simplest case they describe the stroboscopi@Pproach to the Gaussian density takes place via scaling be-
dynamics of a particle that moves in damping medium undehavior of the leading order correction with the time scale
chaotic kicks, which evolve in a deterministic way on a fastparameter. Moreover, we will provide numerical evidence
time scale. The force on the fast time scale is not Gaussiaf@r universal behavior. That is to say, for certain classes of
white noise(as it is for the Langevin equatipiut a more  chaotic forces, one always finds the same deterministic cha-
complicateda priori arbitrary chaotic process, generated byOtiC corrections of the invariant density in the vicinity of the
a deterministic evolution rule. For the case of a linear dampGaussian limit case. We will present analytical results ob-
ing, one obtains maps of Kap|an-Yorke ty[:%] Many as- tained for Tchebyscheff polynomials where the dynamics
pects of such dynamics have been investigated, dealing witédn be understood completely. Finally, we will sketch a
ergodic and mixing propertigs5,17,18,2Q) the dimension renormalization-group approach to this problem.
of the attractof16,21,23, higher-order correlation functions

[19], invariant densitie$15,24], and many other properties. Il. NUMERICAL INVESTIGATION OF UNIVERSALITY

Generalizing the concept to higher dimensions, physical ap- PROPERTIES
plications have been pointed out for turbulef2é—27 and
quantum-field theorief28,29. We investigate dynamical systems of the skew-product

For the maps of skew-product form considered here, unform
der certain assumptions concerning the mixing properties of
the chaotic driving force, it has been proven that the compli- X 1= T(Xy),
cated chaotic dynamics reduces to a Langevin process in an
appropriate scaling limifregarding the initial values as ran-
dom variables The proof is based on functional central limit Up+1=AUptV7X,, A=e " (1)
theorems for weakly dependent evefit8,30. For example,
the convergence to the Langevin process has been provedis some chaotic mapping andis a small time scale pa-
rigorously for kick forces generated by Tchebyscheff mapsameter. The above kind of map is called a map of linear
or any other map conjugated to a Bernoulli shift, as well ag angevin type[12] since it is related to the linear Langevin
for other maps such as the continued fraction map. Mangquation describing dynamical Brownian motip45]. u,
interesting results on central-limit theorems for dynamica'C()rresponds to the stroboscopic velocity of a particle in a
systems are well known in the mathematical literafil8®-  viscous medium subjected to a chaotic kick force. Integrating

44]. the equation of motion
*Present address: Center for Turbulence Research, Bldg. 500, U=—yu+ \/;2 Xq_18(t—n7) 2)
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a) p(u) b) p(u) — po(u)
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FIG. 1. (@ Invariant densityp(u), and (b)
deviation of p(u) from the Gaussiampg(u) for
the second, third, and fourth Tchebyscheff poly-
nomial; 7=0.1.
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one obtains recurrence relati¢h for the velocityu,, imme-  able u, in Eqg. (1) is known to converge to the Ornstein-
diately after the kick. For convenience, we have chosen Uhlenbeck process in the limit—0. For allN, in this limit

=1 and rescaled the kick strengths by the fagfer case the invariant density is given by the Gaussian
We characterize the process generated by (hapy the

marginal invariant densityp(u) of the u variable. The dy- _ \/z o2 3

namics generated by various mapssuch as the Tcheby- Po(W)= We ' ©

scheff polynomials, the tent and the continued fraction map,
the mapT(x) = 1— 2x*, the logistic map, and the binary shift ~ We consider the polynomials
map will be analyzed. For all examples of maps investigated P
in this paper, the numerical simulation of Ed.) confirms To(x)=2x"~1,
that the marginal invariant density converges to a Gaussian

= 3_
distributionpg(u) in the limit 7— 0. For certain map$, this Ts00)=4x"=3x,

can actually be proved rigorously. If the mapossesses the T,(x)=8x*—8x2+1

so-called¢ mixing property (a slightly stronger condition '

than the ordinary mixing propentyt can be shown that the T5(X) = 16x5— 203+ 5,

solutionu(t) of Eq. (2) converges to the Ornstein-Uhlenbeck

process in the limitr— 0, t=nr finite, regarding the initial Te(X)=32%°%—48x*+ 18x2—1, (4)

valuesx, as random variablegl3,30. Hence in this limit
there is equivalence between Efj) and the Langevin equa- and initial valuesxy,e[—1,1]. It is possible to obtain an
tion, and the rescaled deterministic chaotic kick force re-analytic expression for the probability densgfu) for small
duces to Gaussian white noise. On the other hand, for a finitbut finite 7 by considering a perturbative expansion in the
time scaler, which is inherent in any physical system, theretime constantr. The corrections to the Gaussian can be de-
are deviations of the invariant densipgu) from the Gauss- termined either from the Perron Frobenius equafi®4] or
ian po(u). These deviations depend on the miap by an investigation of higher-order correlations and subse-
In order to understand these deviations, we have perguent Fourier transformatidri9]. The calculation has so far
formed an intensive numerical study for various standardeen explicitly carried out for the map,, yielding [19,24]
examples of mapd. For each choice off we have per-
formed 1@ iteration steps of Eq(1) and have calculated p(u)=[1+7"c(—2u+5u)]po(u)+O(7), (5
histograms of theu variable. We have repeated the calcula-
tion for several values of the time scale parameteiror
some mapd the standard deviation of the Gaussiag{u)
approached in the limit of vanishingis known analytically
[13]. In this case the deviations from the Gaussj#u) ian po(u).

; - ; Figure Xa) shows numerical results for the invariant den-
—po(u) can be evaluated immediately. If the standard devia- . _ )
tionois not known, we have determined it numerically from aSIy p(u) obta|n9d for the second, th|rd,_ and foqrth Tpheby-
simulation with a,very small value of scheff polynomial. The plots were obtained by iterating Eq.

(1) for the parameter value=0.1 and using the histogram
method. While the probability density foF,(x) shows a
clear asymmetryp(u) is symmetric or almost symmetric for
We start with the case in which the magn Eq. (1) isa  the Tchebyscheff polynomials of higher order. This is con-
Tchebyscheff polynomial’y of orderN. It has been shown firmed by Fig. 1b), which shows the deviations from the
in [19] that for these polynomials the number of nonvanish-Gaussianp(u) —po(u). In Sec. lll we will outline how the
ing higher-order correlations is smaller than for any otherinvariant density can be analytically calculated for the Tche-
deterministic map semiconjugated to a shift. Therefore, thdyscheff polynomials of arbitrary ordé&=2.
Ty have strongest random properties and the dynamics is, in It has been proved ifil2] thatp(u) is symmetric ifT(x)
a sense, closer to Gaussian white noise than that generatisdan odd function and if at the same time the invariant den-
by any other smooth chaotic map. Since the TchebyscheSity p(x) of T is an even function ok. Since for all Tche-
polynomials arep mixing, the process generated by the vari- byscheff mapsly the invariant density

wherec=1 for the Tchebyscheff map, andc= —1 for the
Ulam map—T,. Note that the first correction term of order
72 consists of an odd polynomial multiplied by the Gauss-

A. The Tchebyscheff polynomials
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FIG. 2. Scaling of the deviations from the Gaussip(u)
—po(u) for the third and fourth Tchebyscheff polynomiat;
=0.05 andr=0.2.

1
p(X)= ﬁ (6)

is an even function, the symmetry pfu) is thus understood
for all Tchebyscheff maps with odd. On the other hand,
there is no simple explanation for the symmetry pdfu)
generated by, and T¢. We will come back to this in Sec.
.
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FIG. 3. Deviations ofp(u) from the Gaussiampy(u) for the
Tchebyscheff polynomial§,, Ts, andTg; 7=0.1.

The continued fraction map
T(x)= t2 0,1 8
(0=3-15) xe01 ®

is also ¢ mixing. However, it is not conjugated to a shift.
Neither map(8) nor its invariant density

Figure 2 shows the deviations from the Gaussian for the 1

third and fourth Tchebyscheff polynomials, calculated for

two different values of the time constant=0.05 and

7=0.2. The smaller the deviations from the Gaussian, th
more difficult it is to calculate them with a small statistical

error. We have divided the deviatign(u) —po(u) by 7 in
order to analyze the scaling behavior withSince the curves
in Fig. 2 calculated for different do not differ significantly,

there is numerical evidence that the first correction to th

Gaussian is of order. This stands in clear contrast 1,
where it is of orderr'/?

. Generally, no corrections of order

p(x)= T omn2 ©)

fave simple symmetry properties. When iterating niap

the mean valuéx)=1/In2—1 is subtracted from,, in order
to obtain a kick force with average 0.

Again we have numerically calculated the marginal in-
variant densitiep(u) for different values of the time con-

S&tant 7 and compared the respective deviations from the

Gaussian distribution. Both maps yield an asymmetric den-
sity p(u), just like the Tchebyscheff polynomial of second

1/2 H H
7" are observed for arbitrary Tchebyscheff polynomials of g jer "Figure 4 shows the deviations for different values.of

orderN=3.

Further increasing the inde, one notices that for the

Tchebyscheff polynomials of ord&t=4 the invariant den-

sitiesp(u), as calculated by the histogram method, coincid
for all N within the statistical error. This is shown in Fig. 3.

We will explain this fact in Sec. Ill.

B. The tent and continued fraction map

In the case of the tent map the functiorigp(u)
—po(uw) ]/ Jr agree well for different values of the time con-
stant. The convergence of the invariant density to a Gaussian

or —0 is slower for the continued fraction map; higher-

order terms play a more significant role. For both the tent
and the continued fraction map the deviations from a Gauss-
ian show scaling behavior witkr for sufficiently smallr.

The tent map a) Bulpl) b) Belope(s)
T(x)=1-2|x|, xe[—1,1] (7) ' =:°g°§z_ 04
7=0.04 -

is semiconjugated to the Bernoulli shift and hence imix- ” o A
ing. It is an even function ok and it has an even invariant 0 J/\?
density p(x)=3% on [—1,1]. Though the tent map is topo- T o
logically conjugated to the second Tchebyscheff polynomial . " '
T,, the entire two-dimensional ma) is not, and hence a ' 04
different dynamics arises. When iterating K@), noise of 2 1 0 | 2 16 08 o o0z 16

u u

small amplitude is added to the iteratesin order to avoid
numerical errors that occur when the trajectory comes close FIG. 4. Scaling of the deviations(u) — po(u) for (a) the tent
to the fixed pointx=—1. and (b) the continued fraction map.
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FIG. 5. Scaling properties @#) the tent map,
7=0.005, andr=0.02 andb) the continued frac-
tion map, 7=0.008, andr=0.02; comparison
with the functionc,p,(u) andc,p;(u) with c;
=1.62 andc,=0.59.
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In Fig. 5 we compare the deviations from the respectiveMisiurewicz points, the mixing properties are not analyti-
Gaussian for the tent and the continued fraction map wittcally known. Foru<2 we have calculated the marginal in-
those of the Ulam map. For this purpose we scaled the probrariant densityp(u) numerically. We again have subtracted
ability distributions such that the standard deviation takes théhe mean valuéx) from x,, in Eq. (1). The invariant density
value o=1/2 for all p(u). There is numerical evidence that p(u) converges to a Gaussian with a different variance for
for both the tent and the continued fraction map there isach value ofu. It depends on the control parameter in a
convergence ofp(u) — po(u)]/y/7 to cpy(u), with complicated fractal wayFig. 6).

Figure 7 shows the deviations from the Gaussian #for
p1(u)=(2u—5u®)po(u) =0.04 and7=0.08 and for six examples of the control pa-
rameter. The first figure once again shows the antisymmetric
being the analytical result obtained for the Ulam map. Thersi-order term and the scaling witlir observed forw=2.
limits obtained for all three mappings differ by the facor  peyiations from antisymmetry are just due to the next per-
only. Wherea =1 for the Ulam map, we have=1.62 for  hative term of order-. When x is decreased, the asym-
the tent map and=0.59 for the continued fraction map. It ety of p(u) becomes smaller. Even whea is only
can, therefore, be concluded that the first corrections to th@lightly smaller than 2, the distribution has lost its scaling

Gaussian are given by expressid) and that this expres- papayior with /7. For 1.992 1>1.95 the deviations from
sion has universal significance, being of relevance for severqlle Gaussian are similar to those observed for the Tcheby-
different maps. scheff polynomials of ordelN=3 and the distributions scale
approximately with7. Three examples for this range are
shown in Figs. ®)—7(d). While for ©=1.99 andu=1.96

(10

C. The map T(x)=1—2x*

For the map the functiond p(u) — po(u) ]/ are quite similar for different
7, deviations from this simple scaling behavior appear for
T(Xy)=1-2x% xe[-1,1] (1)  w=1.97. Adistinguished parameter value for which we have

observed both exact scaling withand a symmetric devia-
the mixing properties are not known. The simulation hastion p(u)—pg(u) is u=1.96. Foru<1.94 the distributions
shown that large numerical errors occur when the trajectoryre different from those observed for the Tchebyscheff poly-
reaches the vicinity of the fixed points. Therefore, a preciséomials of higher-order. They are asymmetric and no simple
calculation of the invariant density(u) is difficult. Never- scaling with a power ofr seems to exist. For some values
theless, we have observed that the invariant dersty)
converges to a Gaussian in the limit of a vanishing time(ug)_(u)2
constant. The deviations from the Gaussian are asymmetri
and very close to those observed for the Ulam map. They

show scaling withy/7. .

D. The logistic map 0zr

The dynamics of the logistic map

T(x)=1—ux? xe[—-1,1] ue[0,2] (12) . e s
01 2006,
is well known to depend on the value of the control param- . . -
eter u in a nontrivial way. Foru> u..,=1.401 155189 the R L S
motion is chaotic apart from the windows, where again e T s
stable periodic motion exists. 0
We have investigated the dynamics for values
€[1.8,2.9 that do not correspond to stable periodic motion.
Apart from the valueu=2, which corresponds to the Ulam  FIG. 6. Variance op(u) as a function of the control parameter

map, and apart from special parameter values such as the r=0.002.

1.8 1.9 2
u
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n<1.9 there are invariant densitiggu) for which the de- iteration stepx, .4 is then calculated by performing a shift
viations of the Gaussian are antisymmetric or almost antiof symbols and replacing the last digit randomly by O or 1.
symmetric. Figure ) indicates that foru=1.86 scaling Since the averagéx,)=73 does not vanish it is subtracted in
with /7 appears again. The deviations from the Gaussian argg. (1).

antisymmetric(apart from higher-order termsbut this time The binary shift map i mixing. T(x) is an odd function

the asymmetry has the opposite sign compared to the Ulamwith respect tox=3 and its invariant densityp(x)=1 is

map in Fig. 7a). Asymmetric distributions and scaling with symmetric aroundx=73. Therefore, the invariant density

J7 are typically observed in the vicinity of the windows.

_ F_igure 8 confirms that fo.=1.96 andu=1.86 the de- ) P=ro00) gy P=pa(e)
viations correspond to those of the second and fourth Tche i vr
byscheff polynomialgup to a multiplicative constantThis #EL ] o n=180 =

again indicates universality, i.e., the Tchebyscheff deviations os

from the Gaussian are relevant for other maps as well. 03

E. The binary shift map

0.8

The binary shift map is given by 03
T(x)=2x—[2x], x,€[0,1) (13 i 1 0 1 2 2 1 0 ! 2
u u
where|2x] denotes the integer part ofx2 Since a direct FIG. 8. Deviations from the Gaussian for the logistic map with

simulation of Eq(13) yields problems with round-off errors, (a) x=1.96 and(b) x=1.86, compared to those of the Tcheby-
we have calculated the binary representatiorx,pfn every  scheff polynomialsT, and T,; (a) 7=0.1, and(b) 7=0.02.
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FIG. 9. Scaling of the deviationg(u) — pg(u) for the binary
shift map; 7=0.04 andr=0.1.

p(u) is symmetric[12]. Figure 9 shows the deviations from
the Gaussian that have been calculated with (Ej.Again
the deviations have been divided byn order to show scal-
ing with 7. The functions calculated for=0.04 andr
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FIG. 10. Scaling of the deviations from the Gaussian for inde-
pendent random numbers|ir-1,1), 7=0.02, andr=0.1; compari-
son with the fourth Tchebyscheff polynomial for=0.1.

theoretical method of19] shows that theéD(7) corrections
coincide with those of independent random variables.

=0.1 are very similar, thus indicating that the lowest-order
correction to the Gaussian scales withFor the binary shift
map the shape of the deviation from the Gaussian is different

from that calculated for the Tchebyscheff polynomials of any  The symmetry and scaling properties of the maps ana-
order. It spans up another universality class. lyzed in this paper are summarized in Table I. For the maps

that are known to bep mixing, the deviations from the
Gaussian scale with eitheror 72 For all maps considered
here that are antisymmetric and that have a symmetric invari-
We have also investigated which form the invariant den-ant densityp(x), the corrections to the Gaussian scale with
sity takes on if thex, are not generated by a deterministic 7. If the symmetry properties are different from this, both
chaotic map but chosen as independent random numbers. Winds of scaling are possible. Scaling wittor /2 has also
have used equally distributed random numberg inl,1)  been observed for maps that are not known taphbmixing.
with invariant densityp(x)=3%. Again, convergence to a There seem to exist various shapes of the deviations in the
Gaussian is observed in the limit—0. This, of course, is a case of scaling withr. On the other hand, if the first correc-
consequence of the ordinary central-limit theorem for indetion term to the Gaussian is of ordgfr, then this term ap-
pendent random variables. Figure 10 shows that for the dypears to be always the same function, apart from a nonuni-
namics generated by random numbers the deviations fromersal prefactor. The deviations generated by the Ulam map,
the Gaussian scale with In fact, the deviations are purely tent map, continued fraction map, logistic map with, e.g.,
produced by the discreteness of dynaniits rather than by = 1.86 and the map(x) =1— 2x* all coincide in the limit
nontrivial higher-order correlations, as for chaotic maps.of small values ofr. It can thus be concluded that these maps
Nevertheless, apart from a multiplicative factor, the devia-are members of one universality class. The invariant density
tions for independent random variables are in very goodch(u) is described by Eq(5). On the other hand, the Tche-
agreement with those of the Tchebyscheff polynomials obyscheff polynomials of fourth and higher order and the lo-
fourth and higher order. Indeed, for those maps the graphgistic map for special values of the control parameter lead

G. Discussion

F. Random numbers

TABLE |. Characteristic properties of some chaotic maps.

Map ¢ mixing T antisymmetric p symmetric lim_ g0 Scaling
T3(x),T5(X) yes yes yes 0.5 T
T4(X),Tg(X) yes no yes 0.5 T
Binary shift map yes yes yes 16 T
T,(x) yes no yes 0.5 2
Tent map yes no yes 1//8 712
Continued fraction map yes no no 0.277 77?2
T(x)=1-2x* no no 0.615 T2
Logistic map, somex no no varies AT




PRE 60 APPROACH TO GAUSSIAN STOCHASTIC BEHAVIA . .. 5391

to scaling with7, spanning up another universality class. The p(u)—po(u)
deviations generated by all these maps agree with those ot vT
served for independent random numbers. The correspondin 04 |
correction of orderr is not a consequence of the chaotic
properties, but merely of the discreteness of rfapDiffer-

ent corrections of ordet have been found for the binary
shift map and for the Tchebyscheff polynomial of third-
order. Apparently, for maps that generate scaling behaviol
with 7, there exist several paths to approach the Gaussial

limit. For those that scale witk/7, however, we have only 0 \/

observed one such path.

02

Ill. PERTURBATION THEORY 02 r

In this section we present analytical results for the invari-
ant probability densityp(u) of process(1) for the case in
which the mapT is a Tchebyscheff polynomial of arbitrary -04 &— L ' L
orderN. We will only give an outline of the procedure here. 2 -1
Details of the calculation will be presented elsewhere.

The approach is based on a perturbative calculation of FIG. 11. Comparison of perturbative resyit7) with the nu-
higher-order correlations for small values of the time con-merical result forT,; 7=0.06.
stant7. Ther-point correlation of thex dynamics is

[

1 [+ 4
- —iku
E(lesz .. ,Xjr):: J_lldXOP(XO)le(XO)TJZ(XO) . _Tjr(xo), p(U) 2’7TJ,OO de(k)e . (16)

. . ) _ ) We have extended the approach presenteld @) to Tche-
wherep is the natural invariant density Gi. For the special pyscheff polynomials of arbitrary order. The calculation is
case in whichT is the Tchebyscheff polynomial of second |gngihy but straightforward. The final perturbative result for
order, ther-point correlations have been investigated in de-yha invariant density, including terms up to ordeis for the

tail in [19]. It has been shown that the nonvanishing corre—t hebyscheff polynomial of second ordd9,24
lations correspond to a set of graphs. These graphs consist o? T

incomplete double binary forests withleaves. 2 1
Let us now consider the-point correlation functions psz(u)= ;[1+ 72(—2u+ gud)

E(unl, ce ,unr). If we choose the initial conditiong=0 in
Eg. (1), we obtain +r(2ub— Bty L2 %)]e—2u2+o(73/2);
1n—l (17)
up=72>, c(j)x (14) _ _
j=0 for the polynomial of third order,
with c(j)=\""1"1. Ther-point correlations fou,, thus are a - 2 ) . , 5
superposition of th&(x; - - -x; ), pN=3(u)= 1+ m(3ut+3uP—15)]e "+ O();
-1 (18
E(Un,---un )= 77j20 e and for the polynomials of fourth and higher order,
=
LS - pN=A(u) = \E[H T(—ut+3u%= 1) Je 2+ O(#4)
X'Z—o C(Jl)...C(]r)E(le...X]-r). - 2 16 '
= (19)
This allows us to obtain an expresrsion .for the correlations, arek=3 for N=4 andk=4 for N=5. ForN=4 there are
E(Un,, - - - ,Up ) and the moment&(uy) using the graphs of itfarences in the higher-order terms only, which explains

[19]. The fact that each type of graph corresponds to a cetthe results of Fig. 3. In the limit—0 the invariant density
tain power of\/7 allows for a perturbative calculation of the p(u) approaches the GaussiafB) for all Ty(x),N

correlation functions. =2,3,... Thefirst correction to the Gaussian is of ordér
Using the characteristic function for T,(x) and of orderr for N=3. The correction of order
o V7 multiplying the Gaussian faN=2 is an odd function of

(ik)" u. On the other hand, all corrections of orderare even

G(k):=E(ektn) =2

2 E(up), (19

functions, which explains the symmetry of the distributions
shown in Figs. 2 and 3. In Figs. 11-13 we compare the
we obtain the invariant density by Fourier transformation ofanalytical results with the numerical results from Sec. Il
G(k) in the limit n— oo, Apparently the agreement is very good.
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FIG. 12. Comparison of perturbative resgli8) with the nu- FIG. 13. Comparison of perturbative res@i9 with the nu-
merical result forTg; 7=0.1. merical result forT, andTs; 7=0.1.

holds in the limit7—0; it does not matter if we look at a
IV. RENORMALIZATION GROUP APPROACH sequence;— 0 or a sequence?— 0. The Perron Frobenius

Our analytical results have been obtained for TchebyPperator has been shown to reduce to the time-scale-
scheff maps, but the numerical results of Sec. Il show thathdependent Fokker-Planck operator for-0 [24]. Note that
they seem to have universal significance for larger classes #f¢ Gaussian distribution is universal, meaning that many
maps. To explain universal behavior, a common tool is dlifferent maps satisfy a central limit theorem; details of the
renormalization group formulation. Let us here be led by thenap are unimportant. Hence the Gaussian probability density

analogy with the Feigenbaum fixed point functiggx) well ~ Po(u) corresponds to the fixed point functignin the anal-
known from the period doubling scenafi46,47. This func- 09y Wwith the Feigenbaum scenario. o
tion g is a fixed point of the doubling operat® defined by The behavior in a small vicinity of the Gaussian fixed
point also turns out to be universal, as we find in this paper.
X This is similar to the universality o6 andh. The first-order
Rf(x)=af|f{ —]], (200 correction to the Gaussian density can be understood by

studying the “linearized” version of the Perron Frobenius

wherea denotes the Feigenbaum constant. Universalitg of OPerator in a small vicinity of the Gaussian fixed point for
andg can be explained by the fact that at the critical point ofSMall but finite [24]. Under time-scale-doubling transfor-
period doubling accumulation entire classes of functioins ~ Mation (21), there appear to be only a few routes leading
a suitable function space converge to the fixed pginnder ~ aWay from tqg Gaussian fixed point. If there is scaling be-
successive iteration and rescaling. The behavior in the vicinf@vior with 7, the doubllmg operation leads to an increase
ity of g is universal, which can be understood by studying®f distance by the factor 2 and we only find one universal
the linearized version dR in a small vicinity ofg. Under the function (in leading order which describes the deviation
doubling operation, there is only one unstable direction leadffom the Gaussian fixed point given by EQ.0). Our con-

ing away from the universal fixed poing; described by the jecture on u_niversalit_y is thus a conjecture on the spectrum
universal Feigenbaum constafitand a corresponding uni- of the linearized version of the Perron Frobenius operator. If

versal eigenfunctior of the linearized version of the dou- there is scaling withy, the distance doubles under operation
bling operator. (21) and we have evidence féat least three different ways

In our case the situation is different, but many analogieé‘ow we can leave the Gaussian fixed point under time scale

to the Feigenbaum case hold. We are dealing with probabildoubling. Hence, more universality classes exist in this case.
ity densities, so we have to look at operators acting in spaces

of probability densities. The analogue of the doubling opera- V. CONCLUSION
tion is an operation where the time scale parametar in-
creased to twice that value, i.e., We have investigated the effects that an underlying deter-
ministic chaotic dynamics has on the stationary probability
T—7' =271 (21)  density of a typical Brownian motionlike problem. We con-

sider the motion of a particle in a damping medium under the
We then look at the effect this operation has on the invarianinfluence of deterministic chaotic kicks on a fast time scale
density. In the space of probability densities, the Gaussian. Decreasing the time scale parameteour dynamical pro-
distribution (obtained forr—0) is a fixed point under the cess converges to a Gaussian Markov process, the Ornstein-
above time scale transformation. The central limit theorenmJhlenbeck process. We have presented numerical evidence
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that the route by which this Gaussian process is approachegtoup approach to the problem. Similar asymmetric devia-
is universal for certain classes of mappings, namely, thosdons from a Gaussian as in Ed.7) have also been observed
where the first-order correction scales wifl. Up to a non-  experimentally for velocity differences measured in fully de-
universal factor, we always observe the same functional deseloped turbulent flows; s€&5,27] for a detailed compari-
pendence describing the deviation from the Gaussian distrison with experiments and a suitable chaotic cascade model
bution for a small but finite time scale parameter. It shouldfor these types of problems. Generally, our results are of
be clear that any physical system possesses such a finite tinirgerest for all those Langevin problems in physics where the
scale, since the Gaussian white noise of a Langevin equaticdBaussian white noise is thought to be the result of an under-
is just an idealization. We have sketched a renormalizatiotying deterministic dynamics.
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